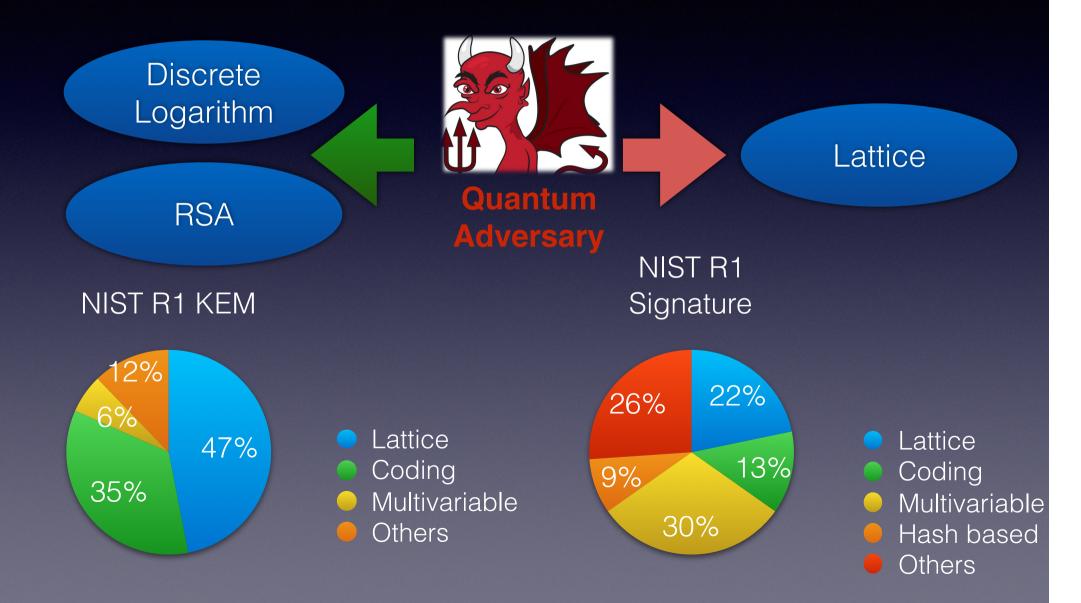
On the Hardness of the Computational Ring-LWR Problem and its Applications

Long Chen, Zhenfeng Zhang, Zhenfei Zhang

PQC & Lattice



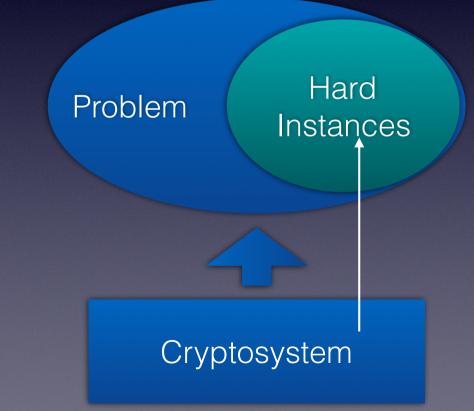
LWE Assumption

$\left\{ \begin{array}{c} A \\ \end{array}, \begin{array}{c} A \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \\ \end{array} \xrightarrow{} \left\{ \begin{array}{c} A \end{array} \xrightarrow{} \left\{ \end{array} \xrightarrow{}$

- Benefits:
 - Quantum Resistance
 - Worst Case Hardness

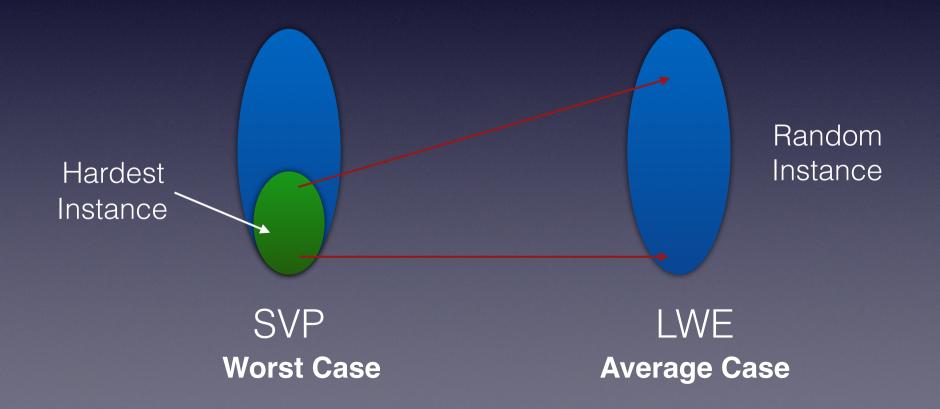
Average Case

Computation Complexity Theory



Worst Case to Average Case

Any (hardest) instance of SVP can be reduced to the average case of LWE problem (Regev 05)



Some Drawbacks

 The larger size of matrix A makes the size of public keys and ciphertexts too large Ring-LWE
 Sampling Gaussian noise is complex and consuming

Ring-LWE

• Let $R = \mathbb{Z}(X)/\Phi_m(X)$, and $R_q = R/qR$

• Ring-LWE is to distinguish

 $(a, as + e) \in R_q^2$ and $(a, u) \in R_q^2$

Hardness Reduction (LPR10)

SVP on ideal lattice Ring-LWE

Worst case

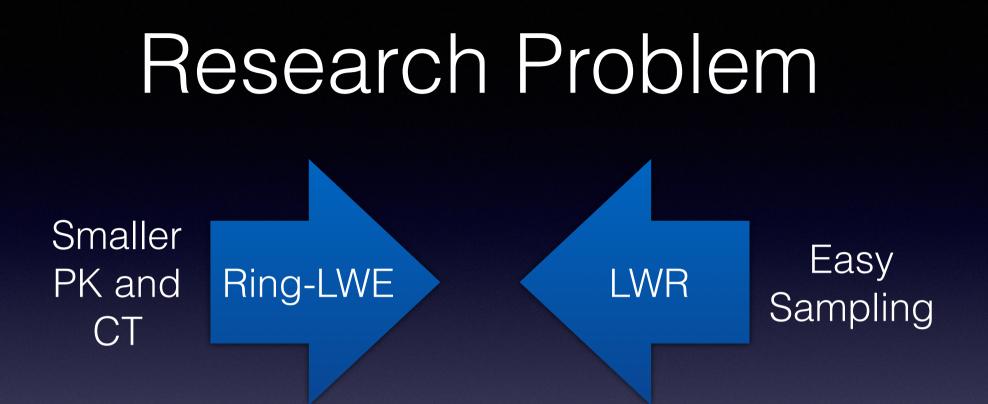
Average case

Learning With Rounding

- Let $A \in \mathbb{Z}_q^{m \times n}$, $s \in \mathbb{Z}_q^n$, $u \leftarrow \mathbb{Z}_q^M$
- To distinguish No Gaussian Sampling

 (A, [As]_p) and (A, [u]_p)

 Hardness Reduction(BPR12,AKPW13,BGM+16)



Can we construct crypto system based on Ring-LWR? What is the hardness about Ring-LWR?

Ring-LWR's Benefits

- 1. No Gaussian sampling, more efficient for computation
- 2. The size of public keys and ciphertexts are smaller
- 3. No decryption failure

In NIST Round 1 PQC Submissions, Saber, Round2 and Lizard adapt Ring-LWR instances instead of Ring LWE

Related Assumptions

• Decisional Assumption:

No Reduction

- To distinguish $(a, \lfloor as \rfloor_p)$ and $(a, \lfloor u \rfloor_p)$
- Searchable Assumption:
 - Given $(a, \lfloor as \rfloor_p)$, find f(s)
- Computational Assumption:
 - Hope: has worst case reduction & can construct efficient schemes

Our Contributions

- Propose the computational Ring-LWR assumption (RCLWR) secret is uniform and invertible no Gaussian Sampling
- Provide a reduction from decisional Ring-LWE to computational Ring-LWR (Worst Case Hardness)
- Provide an asymptotically efficient PKE based on computational Ring-LWR
- Provide asymptotically security proofs for Saber, Round2 and Lizard under RCLWR

Intuition for RCLWR

 $(a, \lfloor as \rfloor_n)$ Input Output $(a, \lfloor u \rfloor_n)$

Challenger Output=Target?

Adversary

The adversary can not obtain more information from the Ring-LWR distribution than the uniform distribution !

CRLWR Assumption

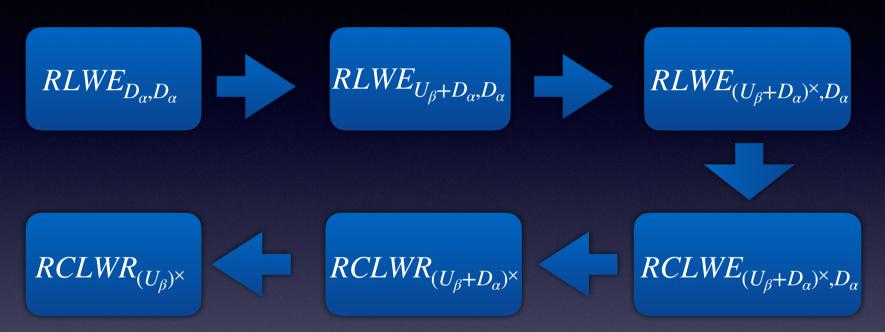
Experiment 1:

Challenger $\left(\left(a, \lfloor as \rfloor_p \right), * * * \right) \rightarrow Input_1, Target_1$ Adversary $(Input_1) \rightarrow Output_1$

Success iff $Output_1 = Target_1$

Experiment 2:

Challenger $\left(\left(a, \lfloor u \rfloor_p \right), *** \right) \rightarrow Input_2, Target_2$ Adversary $(Input_2) \rightarrow Output_2$ Success iff $Output_2 = Target_2$ If Exp 2 is negligible, Exp 1 is also negligible



- The Renyi Divergence between $(a, \lfloor as + e \rfloor_p)$ and $(a, \lfloor as \rfloor_p)$ is small enough when s is invertible
- The Renyi Divergence between U_β and $U_\beta + D_\alpha$ is small

PKE Scheme

- High Level Idea: KEM+One-time Pad
- Our KEM: Similar to Peikert 14, replace Ring-LWE with Ring-LWR
 - RCLWR.KeyGen (1^{λ}) : Given the security parameter λ , choose a seed $\leftarrow \{0, 1\}^{k'}$ and $a = \mathcal{G}(seed) \in R_q$. Then, sample s from $(U_{\beta}^n)^{\times}$ by repeating $s \leftarrow U_{\beta}^n$ until s is invertible. Output $(seed, b = \lfloor sa \rfloor_p)$ as the public key and s as the secret key.
 - RCLWR.Encryption $(pk = (seed, b), m \in \{0, 1\}^k)$: Given a message m, sample r from $(U^n_\beta)^{\times}$ by repeating $r \leftarrow U^n_\beta$ until r is invertible. Compute $\bar{v} = \lfloor \text{INV}(b)r \rfloor_p$, $\hat{v} = \text{INV}(\bar{v})$ and $v = \langle \text{DBL}(\hat{v}) \rangle_{2,2q}$. Also compute $a = \mathcal{G}(seed)$, $u = \lfloor ra \rfloor_p$ and $w = \mathcal{H}([\text{DBL}(\hat{v})]_{2,2q}) \oplus m$. The ciphertext is $ct = (u, v, w) \in R_p \times \{0, 1\}^n \times \{0, 1\}^k$.
 - RCLWR.Decryption(ct = (u, v, w), sk = s): Compute v' = sINV(u) and output $m' = w \oplus \mathcal{H}(Rec(v', v))$.

Security Proof for PKE

- 1. Transform the IND-CPA game to compute the preimage of the hash function using ROM
- 2. Replace the Ring-LWR instance in the public key with uniform instance
- 3. Replace the Ring-LWR instance in the ciphertext with uniform instance
- 4. If both the public key and ciphertext constructed from uniform instances, the probability for the adversary to guess the pre-image is negligible

Comparisons of PKE

- Precondition:
 - Satisfying Worst Case to Average Case Reduction
 - Decryption Failure Probability is Negligible

	Ring-LWE(Pei14)	Ours
Sampling in KeyGen	2	1
Sampling in Encrypt	3	1
Sampling distribution	Gaussian	Uniform & Invertible
Modulus for PK & CT	$\Omega\left(n^{5.5}\log^{0.5}n\right)$	$\Omega(n^{3.75}\log^{0.25}n)$

Thank you !!!